The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.
La iniciativa piloto, que inició en septiembre de 2024 y finalizó en enero de 2025, consistió en equipar algunos vagones del metro con teléfonos Google Pixel. Estos dispositivos se encargaron de recolectar datos de audio y vibración para identificar posibles fallas en las vías. Luego, la información fue evaluada a través de los sistemas de inteligencia artificial en la nube de Google, los cuales señalaban las zonas que necesitaban una revisión más detallada por parte del personal de la MTA.
The pilot project, which began in September 2024 and concluded in January 2025, involved installing Google Pixel smartphones on select subway cars. These devices were tasked with collecting audio and vibration data to detect potential track defects. The data was then analyzed using Google’s cloud-based AI systems, which flagged areas requiring closer inspection by MTA personnel.
“By identifying early signs of track wear and tear, we not only reduce maintenance costs but also minimize disruptions for riders,” said Demetrius Crichlow, president of New York City Transit, in a statement released in late February.
Addressing delays using AI and smartphones
Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.
Subway delays are a persistent problem for New York City commuters. In late 2024, the MTA reported tens of thousands of delays each month, with figures exceeding 40,000 in December alone. These disruptions are caused by a variety of factors, including track defects, construction, and crew shortages.
The smartphones were strategically located both inside and beneath the subway cars. The external devices were fitted with microphones to record both sound and vibrations, whereas the internal phones had their microphones deactivated to ensure passenger conversations weren’t recorded. These internal devices focused exclusively on capturing vibrations to identify any irregularities in the tracks.
Rob Sarno, serving as an assistant chief track officer for the MTA, was integral to the project. His duties involved examining audio clips that the AI system flagged for potential track issues. “The system pinpoints zones with unusual decibel levels, possibly signaling loose joints, damaged rails, or other defects,” Sarno elaborated.
The A train line was selected for the pilot, providing a varied testing environment with both subterranean and elevated tracks. It also featured segments of newly built infrastructure, which served as a benchmark for analysis. Although not every delay on the A line is due to mechanical issues, the data gathered during the pilot could assist in resolving persistent problems and enhancing overall service.
The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.
The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.
The TrackInspect program yielded encouraging results, with the AI system successfully identifying 92% of defect locations verified by MTA inspectors. Sarno estimated his personal success rate in predicting track defects based on audio data at around 80%.
Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.
Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.
Google’s involvement in the pilot was part of a proof-of-concept initiative developed at no cost to the MTA. However, expanding the program would likely require significant investment, making funding a major consideration for decision-makers.
La colaboración de Nueva York con Google forma parte de una tendencia más amplia en la que ciudades de todo el mundo están adoptando inteligencia artificial y tecnologías inteligentes para mejorar los sistemas de transporte público. Por ejemplo, New Jersey Transit ha utilizado IA para analizar el flujo de pasajeros y la gestión de multitudes, mientras que la Autoridad de Tránsito de Chicago ha implementado medidas de seguridad basadas en IA para detectar armas. En Pekín, se ha introducido la tecnología de reconocimiento facial como alternativa a los boletos de transporte tradicionales, disminuyendo los tiempos de espera en horas pico.
New York’s partnership with Google is part of a broader trend in which cities worldwide are adopting artificial intelligence and smart technologies to improve public transit systems. For example, New Jersey Transit has used AI to analyze passenger flow and crowd management, while the Chicago Transit Authority has implemented AI-driven security measures to detect weapons. In Beijing, facial recognition technology has been introduced as an alternative to traditional transit tickets, reducing wait times during peak hours.
La red de metro de la MTA es la más grande de Estados Unidos, brindando servicio las 24 horas en muchas de sus líneas. Este funcionamiento continuo añade otra capa de complejidad a los esfuerzos de mantenimiento, ya que las reparaciones y mejoras a menudo deben realizarse junto al servicio activo. Con el uso de tecnología de inteligencia artificial y teléfonos inteligentes, el programa TrackInspect podría ayudar a la MTA a enfrentar estos desafíos de manera más eficiente.
The MTA’s subway network is the largest in the United States, with 24-hour service on many lines. This round-the-clock operation adds another layer of complexity to maintenance efforts, as repairs and upgrades often need to be conducted alongside active service. By using AI and smartphone technology, the TrackInspect program could help the MTA address these challenges more efficiently.
Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.
Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.
For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.
As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.
The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.